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CRACKING OF A HOMOGENEOUS HALF PLANE
DUE TO SLIDING CONTACT
Serkan Dag and Fazil Erdogan

ME-MECH. Department, Lehigh University, Bethlehem, PA 18015
Abstract

In this report the initiation and subcritical growth of surface cracks in homogeneous
materials due to sliding contact are considered. The load is applied through a rigid stamp with an
arbitrary profile. The problem is formulated and solved under the assumptions of plane elasticity
and Coulomb friction. The stress state on the surface of the half plane is analyzed in the absence
of any cracks in order to determine the crack initiation force and angle. A surface crack is then
introduced and the resulting coupled crack/contact problem is investigated. Extensive results are
presented regarding mostly the mixed mode stress intensity factors which constitute the main

driving force for the subcritically growing cracks.
1. Introduction

In this report, the edge crack problem in a homogenous half-plane due to sliding
contact will be considered. The problem geometry is shown in Figure 1. A homogeneous
elastic half-plane is indented by a rigid stamp of arbitrary profile. The contact area
extends from z = a to z = b at the surface and the half-plane contains an edge crack of
length d. The crack is perpendicular to the boundary of the half-plane. The contact is
assumed to transfer both normal and tangential forces. A normal force of P is applied by
the rigid stamp and sliding contact is assumed at the interface. Friction coefficient is

denoted by 7, hence the tangential force transferred by the contact is equal to nP. p is the

1




shear modulus of the half-plane, x is the Kolosov's constant and for this plane strain

problem, it is equal to 3 — 4v where v is the Poisson's ratio.

Figure 1: Geometry of the problem

In this report, the two dimensional elasticity problem will be formulated and solved using
Navier's equations. By the use of Fourier Transforms, the problem will be reduced to a
system of three integral equations, and these equations will then be solved numerically to

determine the stress intensity factors at the crack tip and contact stresses.

2. Formulation of the problem

First, we will express the boundary conditions that must be satisfied in this problem.
There are mixed boundary conditions at the surface y = 0 and at the crack plane z = 0.
At the surface of the half-plane y = 0, shear and normal stresses are zero outside the
contact area, in the contact area normal displacement component v(z, 0) is known. At the
crack plane z = 0, crack faces do not transfer any normal or shear stress and they

displace relative to each other in normal and tangential directions, but outside the crack,
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i.e. if y < d, there is no relative tangential or normal displacement at z = 0 plane. The
conditions at the crack plane are valid only if the crack is open, —under some loading
conditions crack faces may contact. However, the problem will be solved by assuming an
open crack and a negative mode I stress intensity factor will indicate that crack closure
occurs for that loading condition. There are also additional boundary conditions,
integration of the normal stresses in the contact area must give the total force P applied to
the contact and stresses must vanish as (z? + y?) — co. Since, sliding contact is
assumed, shear stress in the contact area is given by Coulomb's Law. All the boundary

conditions can be expressed mathematically in the following form,

ow(z,0) =0, z<aandz > b, (12)

Ozy(z,0) =0, z <aandz > b, (1b)
4y 0

P 5:1:—1)(3:’ 0) = f(x), a<z<b, (Ic)

0zy(z,0) = noyy(z,0), a<z<b, (1d)

0:2(0,y) =0, d<y<0o, (le)

0ry(0,9) =0, d<y<0, (1f)
b

/ oy(z,0)dr = — P, (1)

(Oyys Ozys Ozz) — 0 as (z* +3?) — o0, (1h)

where v(z, y) is the normal displacement component and f(z) is a known function. Note
that in (1d) o, (z, 0) is always negative and if the friction coefficient is taken as positive,
the shear force transferred by the contact will be directed as shown in Figure 1. The
problem will be formulated using three unknown functions and using superposition.
Considering Figure 1 and boundary conditions (1), following unknown functions can be

defined:




2u O

H+1gy—(u(0+>y)_u(o_ay)):fl(y)a d<y<0> ) (2&)
22 (0%, ) - v(07,9) = ) d<y<0 eb)

K+ 1(9y ' Y yY)) = J2\Y)s Yy >

O'yy(l', 0) = fS("E)’ a<z< b, (ZC)

where u and v are the displacement components in z and y directions respectively. The
scheme that will be employed in the formulation is shown in Figure 2. Problem 1 is the
contact problem without crack and in this case the stresses and displacements will be
obtained in terms of the unknown contact stress which is given by (2c¢). In problem 2
stress and displacement fields will be obtained in terms of the relative displacement
derivatives of the crack faces which are given by (2a) and (2b). This can also be viewed
as the distributed dislocation solution for the homogenous half-plane. Note that f; and fo
are zero in problem 1 and f3 is zero in problem 2. The total stress and displacement fields
for the original problem can then be obtained by summing the solutions of the problems 1
and 2, and satisfying the boundary conditions of the original coupled problem. The

stresses and displacements may then be expressed as

oij(z,y) = Ug})(w, y)+ Ug)(x, Y), i,j=zory, (3a)
u(z,y) = uB(z,y) +u®(z,y), (3b)
v(z,y) = v (z,y) +v¥(z,y). (3¢)

Superscripts (1) and (2) stand for problems (1) and (2) respectively. The stress and
displacement fields given by (3) must satisfy the conditions given by (1). In the following
sections problems 1 and 2 will be formulated to derive the stress and displacement fields

in terms of a certain set of unknown functions.




H, K
Problem 2

Figure 2: Superposition

2.1 Problem 1 - The Contact Problem

Geometry of the contact problem is shown in Figure 3. In this section stresses and
displacements will be obtained in terms of the unknown contact stress, oy, (x,0) at the

surface. The equations of equilibrium can be written in the following form,

00z; 00gy

Oz Oy

=0, (4a)

O0oyy 00y
Oy ok

= 0. (4b)

Assuming plane stress or plane strain and small deformations, for the linear elastic

medium considered Hooke's law becomes




02z (2, y) =

O'zy(xa y) =

Figure 3: Contact Problem

ov ou

ﬁﬁl{(n+1)a—y+(3—ﬁ)a—}, (52)
)
ﬁfl{(ﬁ+1)%+(3—n)5—;ﬁ}, (5b)
u Ov
#{_59—1;+_8_—:E} (5¢)

Contact problem is a plane strain problem, hence for this case x is equal to 3 —4v.

Substituting (5) in (4a) and (4b), governing equations for the displacements can be

obtained as follows,

o%u

(ﬁ + 1)@
2

(k — 1)_5_3

ox?

o%u %

+(f€—1)'6?+26$8y—0, (68)
6%v 0%y

+(l€+1)5?+2-555§—0. (6b)

Considering Fourier Transformation in z, u and v can be expressed in the following form,

1

/oo U(w, y)exp(iwz)dw, (7a)




oey) = o / "V (w, y)expliw)do, | (7b)

where, i = v/ — 1 and U (w, y) and V (w,y) are Fourier transforms of u(z,y) and v(z, y)

in z, respectively. Substituting (7) in (6) following ordinary differential equations are

obtained
d*U dav
—w2(l‘é+1)U+(f€—1)a—&2—+2iW'@—=o, (8a)
d*v aUu
2 ; —
—w(ﬁ—l)V+(l€+1)'@?+2le‘§—0. (8b)

Solving equations (8), substituting the solution in (7) and considering the regularity

condition given by (1h), displacements can be expressed as follows:

1 [* .

ww) =5 [ (MG + AsCa)enp(loly + ) o ©2
1 [ .

v(z,y) = Er_/ (C1 + Cay)exp(|wly + twz)dw. (9b)

Note that in (9) y < 0, C; and C, are unknown constants and A; and A, are given by

4, =2l 4y = 1 (10a,b)
w Cy w w

Substituting (9) in (5) stresses can also be obtained

0z:(T,y) = — 2%;/_ [2|w|C’1 +((k+3)+ 2|w|y)C2]exp(|w|y + iwz)dw, (11a)

o(5,) = L [ [2elCr + (5 = 1) + 2l)Ca] xpluly + i) (11b)
pi [ 2\ C2 :

Ozy(Z,Yy) = -2—%_-/— [2wC’1 + ((k + 1) |w| + 2u?y) —J] exp(|w|y + twz)dw. (11c)




The constants C; and C, will be determined using the conditions (1a), (1b) and (1d) and
stresses and displacements will be expressed in terms of the contact stress oy,(z,0).

Considering boundary conditions (1a), (1b), (1d) and (2c) we can write

00 ) , <z <b
0yy(2,0) = 5% / [2le01 + (k= 1)0y | explivz)de = {gfm r<ar>b

(12a)
_ g " Jw| : _ [ nfs(z), a<z<b
Ozy(z,0) = o) [2w01 +(k+1) " Cg] exp(iwz)dw = {O, r<az>b
(12b)
Taking Fourier transforms of both sides in (12) we obtain the following equations,
b
p(2lw|Cy + (k = 1)Cs) = / f3(t)exp( — iwt)dt, (13a)
. . lw| b .
| 21wC + ik + 1)?02 = [ nfs(t)exp( — wwt)dt. (13b)

C, and C, are determined in terms of f3 solving the linear system of equations (13) and
they are substituted in (11) to derive the expressions for the stresses. These operations are
carried out using the symbolic manipulator MAPLE, some integrals are evaluated in
closed form and following results are obtained:

bt — )3 — ult — )2
oeslat) = = [ ”(t(yzi 7 _"’S)Q)Q) fo()dt, (142)

2/” ny?(t —z) — o
(t)d

Oyy(z,y) = = (W + (t— x)z)g 3

b _ )2 204 __
oxy(m,y)=-72; / ny((; j()t _ery)g()tz x)fs(t)dt. (14c)

(14b)
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the resulting system of ordinary differential equations the expressions for stresses and
displacements for both half-planes z > 0 and z < 0 can be obtained by following the

procedure described below.

Half-Plane, z > 0

In the following equations superscript 4 stands for the half-plane z > 0.

u®(z,y) = i/ [llwlc(‘i) (L i|:’| )02(4)} exp( — |w|z + iwy)dw, (15a)

2m J_ w
@ _ 1 [P pm :
v (z,y) = o (C’l + G, x)exp( — |wlz + iwy)dw, (15b)
. poo 0(4)
o(z,y) = — 2%1; [2wC’1(4) + ((k + Dw] + 2w°7) —fj—]exp( — |wlz + twy)dw,
—00
(15¢)
'uz o . 0(4)
0(4)( Y) = or [QwCI( )+ (= (B=&)w + 2wz) ——j}—] exp( — |w|z + iwy)dw,
-0
(15d)
o0
ai‘;)(x,y) = — 2%/ [2|w|C’1(4) +((k—1)+ 2|w]x)C’2(4)}exp( — |w|z + wy)dw,
(15¢)

where 01(4) and 02(4) are unknown constants. Similarly the solution for z < 0 is obtained

in the following form:

Half-Plane, z < 0

In the following equations superscript 3 stands for the half-plane z < 0.

u®(z,y) —/ [ lel +<E§ Zl:ji )C’2 ]exp(\w|x+iwy)dw, (16a)

10




1 o0
vz, y) = 2—/ (01(3) + 02(3):13) exp(|w|z + wy)dw, (16b)
TJ oo .

cfg(x, y) = “27r/ [ — 2wC}™ + ((K +1)|w| — 2w2$) —f}—}expﬂwlx + wy)dw,
—00

(16¢)
O ) = — P [T 9uc® 2 \Cs .
oy (T,y) = — o | [—— 2wC;” — ((3 — K)|w| + 2w z) T] exp(|wlz + wy)dw,
(16d)
Uii’)(w, y) = ‘2%/ [2|w|C’1(3) +(—-(k=1)+ 2[w|x)C’2(3)] exp(|w|z + iwy)dw,
(16¢)
y
314
X
H, K
d
y
x ——
o \E —I_ y
X

Figure 5: Superposition for the crack problem

where 01(3) and C’ég) are unknown constants. The boundary conditions for the infinite

plane problem are in the following form,
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o$(0,y) = 0$(0,y), — 00 <y < 00,

o£(0,9) = 05 (0, ), — 00 <y < 00,

200, w ®) _JAly), d<y<0
n+18y( (Oy) u (O7y))’— 0’ y<d,y>0

2p 0 3 _Jfly), d<y<0
m+18y< (Oy) o (O’y))—{(), y<d,y>0

(172)

(17b)

(17¢)

(17d)

Using the expressions (15), (16) and boundary conditions (17), the four unknown

constants are determined in terms of f; and f, using the symbolic manipulator MAPLE.

The constants are then substituted in the expressions for stresses and displacements, and

the stresses and normal displacement derivative for the infinite plane containing a crack

are obtained as follows:

o) =7 [ (yzt)(x_(y 9 g

w 7" 224+ (y—t) )

1 [Oz(z® +3(y - )2)
- L 7y fa(t)dt,

T (22 + (y—t)°
(3) 1 y-)BP+ (- t)?)
O':c:c( ay) - ’l'r/d (:1':2 N (y _ t)2)2 fl (t)dt

1 O:c(—:c + ( )2)
/ @ fa(t)dt

i (z )

oa(c?(l",y) /Ox(m2 w1 )fl( t)dt

d (22 +(y— t)2)2

1=t - -1’
+7‘rL (xZ N (y ~ t) ) fz(t)di

12
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(18b)

(18c)




1 (1 —k)xd - (3 + K)z(y — t)?
47r/'l’»/(i (IL'2 + (y _ t)2)2 fl(t)dt

1 [*y-8)[1-r)2’ - B+r)y=1)]
dmp /d (2 + (v - 1)?)° fo(t)dt, (18d)

9 _
527 (z,v)

where superscript () stands for the infinite plane. Half-plane y < O solution, can now be
superimposed on the solution for the crack in the infinite plane to obtain the required
solution. The half plane y < 0 solution is given by equations (9) and (11) in terms of two
unknown constants C; and C,. These constants are determined in this case by imposing

the following free surface conditions:
oy(z,0) =0, —00 <z < 00, (192)
Ozy(2,0) =0, —00< I < 00. (19b)

Note that these conditions must be satisfied, by the total solution, i.e., the sum of the
solutions for infinite and half-planes have to satisfy the boundary conditions. The
constants C; and C, are determined using the symbolic manipulator MAPLE, by
imposing the above mentioned boundary conditions, the stresses and normal
displacement derivative for a crack in a half plane as depicted in Figure 4, are then

obtained as follows:

0 0
cun(e,) = 2 [[Sealo v, 0700 + [ oot 501t +o0ie0)

(20a)

ontet) = 2 [ St 00a1+ [ Syatent )it} +ole)
(20b)

ot0) = 2 [ Sue 00t + [ Suato (et | + 08 ),
(20¢)

13




O ° Pe)
N 471.“‘{‘/d Svl(x’ v t)fl(t)dt +/d Sv?(x7 Y, t)f?(t)dt} -{-_ Lg(;f,—wa

(20d)

Ov(z, y)
oz

Sez1(z,y,t) = {16yt(y + )% — 2y + 1) (12 + 10yt + 382) (y + 1)° + %)

+ By +50)((w+ 1) +27)’ ) (W + 1) +27)°, (20¢)
Spas(z, y,) = {16xyt(y + )% — 22(3¢2 + dyt — ) ((y + 1)° + 22)

—e(w+ 0+ 22} (w+ 0 +2%)’, (200
Spn(z.v,t) = { = 169ty +8)° =20y +1) (= v* — 6t + ) (W + )" + *)

F(—y+) @+ +2) )/ (w+0° + =), (20g)
Sualz,u ) = { = 16ayt(y +1)° = 22(* + 1) (v +1)° + 2°)

—z((y+1) + x2)2} /(g +)° +22)°, (20h)
Sour(2,7,1) = { — 16zyt(y + 1) + 2z (dyt + v2 + ) ((y + 1)* + 22)

— oy + 0+ 7)) /(0 + ) (20i)
Spa(z,y,1) = {16yt(y 41— 2y + 1) (— v + byt + ) ((y + 1)° + 2°)

+(t-n) @+t +2) H (w+0" +2)’, (209)
Su(z,y,t) = x{(/ﬁ +3) (g — 8yt?) — 6(k + 8)3t2 + (k — 1)z

+2(k + D2 (y? — t2) — (1 + 3x)t*

+ 8yt(z? — 2y2)} /(+1)+22)°, (20K)

14




Sia(@,9,t) = { (5 + 3)° + 2 + D22y’ + ) + (5 = Va'ly — 1)
+6(k — 3)yz2t(y + t) + 2(9% + 23)t%y° + 2(11k + 21)t%y

+ (136 + 5)thy + (Tr + 21)ty* + (1 + 3ﬁ)t5}/((y +1)* + x2)3. (201)

2.3 Solution for the coupled crack - contact problem

Since the expressions for the contact and crack problems are derived, stresses and
normal displacement derivative for the coupled crack and contact problem can now be
obtained by using equations (14) and (20). For the coupled problem stresses on the crack
plane, and normal displacement derivative at the contact surface are found to be

1 /% 1 1 2t 412
0:2(0,9) = — + + - t)dt
(0.9) "T./d (t—y t+y  (t+y) (t+y)3>f1()

+%[%%%%ﬁ@@ Coo<y <0, 212)
0zy(0,9) = ;r-/do(t i ” + t-il—y + T -{2-ty)2 - T j_tzy)g)fz(t)dt
g0 -1 [ o 1 o
—n:;if?)(:c)%-% ab{—?_(—%dt, | — 00 <z < 00 (21c)

15




3. Integral equations and singular behavior of the unknown functions

Using the boundary conditions (1c), (1e) and (1f) and equation (21), following system

of integral equations can be obtained to determine the unknown functions fi, fo and f3

for the coupled crack and contact problem,

022(0,9) = tfl__ dt + / K (t,y) Ai(t)dt + - / Kis(t,y) f3(t)dt
d<y<o, (22a)
0zy(0,y) = fz_( dt + — / Kan(t,y) fa(t)dt + — / Kos(t,y) f3(t)dt = 0,
d<y<0, (22b)
dp 10 1[0 k=1
e+ D) 5,07 0) = 7T/d K3 (t, z) f1(t)dt + ;/d Ka(t,z) f2(t)dt — n 1f3(117)
b
160,
=y —-——-—t_mdt—f(x), a<z<hb. (22¢)
The kemnels are given by
2t 4¢?
Ki(t,y) = Ka(t,y) = + - , 23
11( y) 22( y) t+y (t+y)2 (t—+—y)3 ( a)
2(nt® — yt*)
Kis(t,y) = reR (23b)
2( =yt +y*t)
Kos(t,y) = , 23
23( y) (y2+t2)2 ( C)
4%z
Ki(t,z) = — ———, 23d
31(t, @) (:172+t2)2 (23d)
4¢3
Ka(t,z) = m, (23¢)

16




All the singular integral equations contain a Cauchy integral and also the kernels K1,
K5y, K13 and K,3 become singular as ¢ and y simultaneously go to—zero. Similarly, the
kemels K3 and K3, become singular as z and ¢t simultaneously go to zero. Since,
022(0,7), 02,(0,7) and Ov(x,0)/dz are bounded at all points in their respective
intervals, the unknown functions may have a special behavior in the form of a power
singularity at the end points. In this section the singular behavior of the unknown
functions will be examined using a function-theoretic method. In this analysis, there are
two cases. If b < 0, in addition to the Cauchy singularities only terms that can become
singular are Ky, and Kj. Other kemels are bounded at all points of their respective
intervals. If b = 0, all of the kernels have to be examined to determine the singular

behavior of unknown functions. We will begin with the case of b < 0 in the next section.
3.1. Singular behavior of the unknown functions for, b < 0

We will examine the possibility of a power singularity in the unknown functions for

the case b < 0. Initially we assume the following form for the unknown functions,

AR =R@)(-)*t-d4",  d<t<0, (242)
L) =FR)(-t)* (-4,  d<t<0, (24b)
f2(t) = F3(@)(b —1)°(t — a)’, a<t<b. (24c)

where F;(t), (j = 1,2, 3) is Holder-continuous in its respective interval and it is assumed
that — 1< R(ay,0s,71,7,w,B) <0. Consider now the following sectionally

holomorphic functions

1 [P A
= —7; ) t—zdt’ (253,)

V1(2)

17




1 0 £a(2)

Pa(z) = ) - dt, » (25b)
1 [?fa(t)

P3(z) = - ) P Zdt. (25¢)

The singular behavior of v;(z), (j = 1,2,3) around the end points is in the following

form, (see, for example Erdogan [1] or Muskhelishvili [2]),

h(2) = - F(@)(—d)» T2 gy 4 R(0)(— d)" e + F(2),

sin(7y;) sin(7a; )
26a)
— _ azexp(_"Ti'Y?) 2 —d)™ AR 2% (5
Po(z) = — Fa(d)( —d) ~en(ra) (z—d)” + F2(0)( —d) Sn(ma) F*(2),
(26b)
#o(2) = — Ra)(o — o) TR e — o) + RB)b - o E 1 )
(26¢)

The function F*(2),(n =1,2,3) is bounded everywhere except possibly at the end
points, where it may have a weaker singularity. Using Plemelj formulas and equations
(26) the singular behavior of the Cauchy integrals at the end points, for the given form of
unknown functions is obtained as follows:

1 Of—l(i)-dt = — F(d)( — d)*cot(nm)(y — d)™ + F1(0)( — d)" cot(mau )( — )
), t—y 1 NNY 1 oy Y

+ Hi(y), d<y<0, (27a)

7_1r dotiz;(t—;dt = — Fy(d)( — d)*cot(my2)(y — d)™ + F5(0)( — d)™cot(mas)( — y)**
+ Hy(y), d<y<0, (27b)
1 bf—S(-th = — F3(a)(b—a)“cot(nf)(z — a)’ + F3(b)(b — a)Pcot(mw) (b — )*

T, t— T

+ H3(z), a<z<b (27¢)
18




Hi(y), Ha(y) and H(z) are bounded in their respective intervals, and at the end points
their behavior is similar to that of F*(z) in equations (26). Now, consider equations (25)

and assume that complex variables 21, 2o and z; satisfy the following conditions:

21 ¢ (d<y<0), (28a)
2 & (d <y<0), (28b)
z3 ¢ (a <z <b). (28c)

Under these conditions, 11 (21 ), ¥2(22) and 3(z3) are holomorphic. Thus, we can write,

0
P1(z1) = 1 ’i(tldt, (29a)
mJ4 t—2;
1 (% falt)
Yo(2z2) = =/, t_—;;dt’ (29b)
b
P3(z3) = % gi(%dt- (29¢)

For the case b < 0, other than the Cauchy integrals whose singular behavior are given by
(27), the kernels that can become singular are K; and Ko, and all the other kernels of the
integral equation remain bounded. It can be seen that, as y and ¢ simultaneously go to
zero K;; and K5, become singular. Equations (29) will be used to determine the singular
behavior of K;; and Koy in the following analysis. K;; can also be expressed in the

following form:

1 6y 42
Kult,y) = — + - . (30)
nbY = =y T i e o)
Also note that,
1 d 1
(t+y)? _@(Hy)’ G1a)

19




1 1d2/ 1
= —). 3
(t+y)® 2dy? (Hy) - (31b)

Then, using (29a) and (30)-(31) we can write

L [ i@ = — (- - v - )= 27 () ()
de,yl = -y ydyly ydy21y'

Using (26a), singular behavior of this term near y = 0 can be expressed as follows:

o 2a1+4a1+1 (e
L [Kutnars - 2EEE 4 -y RO) (33

Similarly for K5, we obtain,

202 + dag + 1

Sin(ﬂ'ag) - d)’Yz( - y)OQFZ(O)' (33b)

0
%/d Ko(t,y) fo(t)dt = —

Note that instead of showing the bounded terms, == sign is used in (33). Since singular
behavior of all the terms are determined, using (27) and (33) the singular behavior of the

integral equations given by (22) can be expressed as follows:

2
0,2(0,9) = F1(0)( — d)" [cot(ﬂ'al) _ 2_a;_+_4£1i.1] _ )

sin(ma )
— F(d)( — d)*cot(my)(y — d)™, (34a)
o2
024(0,y) = Fp(0)(—d)” [cot('!raz) - %]( —-y)*
— Fy(d)( — d)*cot(my)(y — d)™, (34b)
54_51 ba—xv(x, 0) = — Fs(a)(b— a)“cot(nf)(z — a)? + F3(b)(b — a)Pcot(nw)(b — z)*
N e DR (340)

Now, the characteristic equations can be derived by using (34) to determine the unknown

exponents. Multiplying (34a) by ( — y) ™ and lettingy — 0 we obtain,
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2a%+4a1+1 _

cot(may) - sin(7ma; )

0, (35)

and multiplying (34a) by (y — d)™"* and letting y — d we have,

cot(my;) = 0. (36)

It is assumed that F}(0) and F}(d) are not equal to zero. Similarly using equation (34b)

we obtain
2
4
cot(ma) — Zpridmtl (37a)
sin{masy)
cot(my,) = 0. (37b)

Again F5(0) and Fy(d) are assumed not to be zero. Multiplying (34c) by (z — a)_'B and

letting z — a we have the following equation

k—1

FES G8)

cot(mf) = — 1

and multiplying (34c) by (b —z)™ and letting z — b we have another characteristic

equation to determine w

k=1
cot(nw) = Uy (39)

F3(a) and F3(b) are assumed not to be zero. Equations (35) and (37a) have no roots in
the interval — 1 < @y, @y < 0, hence the unknowns f; and f, have no power singularity
at the end point at y = 0. This is the well known result for an edge crack and from
equations (36) and (37b) we obtain, 71 =2 = — 1/2. Equations (38) and (39) give the
strength of singularity at the ends of the contact area. These exponents are less than zero
if the half-plane is in contact with a flat stamp as shown in Figure 1. If the half-plane is

indented by a circular stamp at the end points contact stress is zero and the exponents are
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greater then zero. Since, there is no singularity at y =0 for f; and f2, they can be

expressed in the following form

Fi(t)
t—d)*

Fy(t)

T (40a,b)

f(t) = fa(t) =

In this case the asymptotic behavior of the sectionally holomorphic functions ¥1(z) and

1)5(2) near the end point 0, can be written as follows (see, for example Muskhelishvili,

[2D),

In(2). (41a,b)

Singular behavior of the Cauchy integrals at the end point 0, then can be written as

1 °A@®) ,  F(0)
o e “
1 OfQ(t)dtfz F5(0) In( — p). (42b)

TJet—y  w/ —d
For this case, integral equations must be examined to search for a logarithmic singularity.
Considering equation (30), the only term that causes a logarithmic singularity is the first

term and we can write,

1 [PA(t Fi(0

1AW o BO (43)
TJa t+Yy T —d

Hence, in integral equation (22a) the only terms that have logarithmic singularity are

given by (42a) and (43), but as can be seen these terms cancel each other. So there is no

additional condition to eliminate the existence of a logarithmic singularity in (22a) and

similarly it can be shown that this is also the case for (22b).
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3.2. Singular behavior of the unknown functions for, b = 0.

In this section, first we will examine the possibility of a power singularity in the
unknown functions for b = 0 using the function-theoretic method. If b = 0, Ki1, Ko,
K3 and Ko3 become singular as y and ¢ go to 0 and K3, and K3, become singular as z
and ¢ approach 0. Hence, all the kernels must be examined to determine the strength of
singularity at the point, z = 0, y = 0. The unknown functions can expressed in the

following form,

f1(t) =GO (=)*(t — )™, d<t<0, (442)
fo(t) = Go(t)(— t)*(t — d)™, d<t<0, (44b)
£3(t) = Gs()( — 1)*(t — ), a<t<O. (44c)

The function G,(t), (j = 1,2,3) is Holder-continuous in its respective interval, and it is
assumed that — 1 < R(a, 71,72, 8) < 0.The definition of the sectionally holomorphic
functions is given by equations (25) and the singular behavior of these functions near the

end points is given by,

_ aexp( - 7”’7 ) _ " _ 04! Za *
$1(2) = = Gid)(— &) = Gmm= (@ = A + GiO)(= ) s + GiR),
(452)
— a exp( — MY ) T2 T 2 N
Po(z) = — Go(d)( — d) W(z —d)” + G5(0)(— d) e Gi(2),
(45b)
P3(z) = —Gs(a)(—a)“gﬁiﬁ(z—a)ﬁ%(o)(—a)ﬂﬁa—) G3(2).
(45¢)
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G*(z) is bounded everywhere except possibly at the end points where it may have a
weaker singularity. Using Plemelj formulas and equations (45) singular behavior of the
Cauchy integrals at the end points can be expressed as,

% dO {]ft;dt = — Gl (d)( —_ d)ac0t<ﬂ"yl)(y - d)’h + G](O)( _ d)’hCOt(’[rO[)( _ y)a

+ Hi(y), d<y<0, (46a)

;1; dotiﬁé%dt = — G,(d)( = d)*cot(my)(y — d)” + G2(0)( — d)"cot(ra)( — y)°

+ Hy(y), d<y<0, (46b)

0
;lr‘ {%dt = — G3(a)( — a)%cot(nf)(z — a)? + G3(0)( — a)Pcot(ma)(b — z)*

+ H3(z), a<z<0. (46¢)

If we assume complex variables z;, 2, and z; satisfy the following conditions

21 ¢ (d <y <0), (47a)
z ¢ (d<y<0), (47b)
z3 ¢ (a <z <0), (47¢)

then, 11 (21), ¥2(z2) and 43(23) are holomorphic and equations (29) are valid. In order to
determine the asymptotic behavior of the integral equations, the kernels will be expanded

into partial fractions in the following form,

B _ 1 6y 4y
Ku(t,y) = Kn(t,y) = — D) + t+9) Tt (482)

— 4+ —— +
t+iy  t—iy  20t—iy)® 20t +iy)’

Ki3(t,y) =n( L L Y il )

_ 3 1 B Y _ y
e+iy)  2-i) 2t+i) 20t-iw) (480)
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a i i 3 y _ y
Ko(t,y) = 77( 2(t + 1y) + 20t—1y)  20t+iy)® 20t - iy)2>

" oo
20t +1y)° 20t —iy)*

Kgl(t,il?) = (t+$2) - (t+xi)2 + (t_ml) - (t—.’L’i)?:

2 (% 4 2 4 (%
t+zi  (t+zi) t-zi (t-zi)

K32(t, :c) = R

Using (29) and (48) we can write the following expressions

0
2 [ Kut i hid = = (=) - by (v 2" Lon(-),

0
2 [ Kt ) (00t = = =9) = byl —9) 2 L -,

e

0
2 [ Kaalts ) fs0)at = n v~ i) + ) + - (i) + a( — )

t\.’)|~

() — sl — ) — 2o (i) = vl — ),

%/GOK%(@ y) fa(t)dt = <

f—y(ws(iw T s(— i),

(s(i9) ~ 95— i) ~ - wnti) — v~ )

[NCRIEN

NGRS

0
2 [ Kt ) a0t = i (i) = (= ) + i () = = ),

1/ d
;/d Kao(t, z) f2()dt = 2(xa(iz) + 1o — iz)) + x@;(%(m) + iy — iz)).

(48¢)

(48d)

(48¢)

(492)

(49b)

(49¢)

(494d)

(49¢)

(491)

The asymptotic behavior of the expressions given above near y = 0 and z = 0 can now

be obtained by using equations (45) as follows:
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202 +4a+1

L'k o) fidt 4" G, (0)( — v)° 50
B S RCTUI (502)
0 2
L[ Kttty - 2L ayre0) (- (50b)
neos(ma/2)(a + 2) + sin(ma/2) (o + 1)
/ Kis(t: ) f5(t) ( sin(ra) ) %
x (— a)’G3(0)( - v)°, (50c)
0 : _
2 [ Kalt.) 0yt = (”Sm(m/ 2)(";;(1) acos(na/ ”)( — ) Ga(0)( - )",
(50d)
0 sin(mo .
L [ Kattapars e o 1)(— A Ga0)( - ) (50¢)
cos('fra/2) y N
/ Kan(t,2) o)t = 25 72050 04 9)( )Gy (0)( — )" (500

Using (46) and (50), we can express the singular behavior of the integral equations (22)

near the end points as

02:(0,y) 2= — cot(mm)( — d)*G1(d)(y — d)™ + cot(ma)( — d)" G1(0)( - y)°

20% +4a+1
sin(7a)

(= d)"G1(0)(—v)*

(ncos(m/?)(a +2) + sin(ra/2)(a + U) (-—a)’Gs(0)(—y)%,  (5la)

sin(ra)

02y(0,9) = — cot(my2)( — d)*Ga(d)(y — d)™ + cot(ma)( — d)"G2(0)( — 9)°

20% + 4o+ 1
sin(ma)

(= d)*G2(0)(—u)*

N (nsin(m/zxa +1) - acos(ma/2) )( _ )P Ga(0)( ~ 1), (s1b)

sin(ma)
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4y 3M%0)g_mmmﬂﬂ—aVGﬁ®@~af+¢m@®(—@%%mx“$f

(k+1) Oz
~ 152 Ga(@)(~ 2)° (e — o)
B o+ (- 4 GO~ )"
2935%0;/—;‘) a+2)( = d)Ga(0)( — z). (51c)

The expressions given by (51), are bounded at all points in the intervals a < z <0 and
d < y < 0. Using this condition characteristic equations can be obtained to determine the
unknown exponents. If we multiply equation (51a) by (y — d)™ and let y — d and then

multiply by ( — )™ and let y — 0, we obtain two equations in the following form

COt(ﬂ-’Yl) = Oa (528.)
sin(17roz) [COS(WO‘) - (20" +da+ 1)] (—d)"Gi(0)
sin(ma) [eos(rar/2)(a +2) + sin(ra/2) e + D](-0)’G4(0) = 0. (52b)

Multiplying equation (51b) by (y — d)™ and letting y — d and then multiplying by

( — y)~® and letting y — 0 we obtain the following equations

COt(W72) = 0> (53&)
sin(lvra) [Cos(m) — (20" +da+ 1)] (= d)”G>(0)
sin(ma) [nsin(ma/2)(a + 1) - acos(re/ 2)](—a)°Gs(0) = 0. (53b)

~® and

Multiplying (51¢) by (z — a)"’5 and letting z — a, then multiplying by ( — )
letting z — 0, following equations are obtained
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cot(nf) = — 17, _ (542)
cos(ma/2)

sin(ma/2)
2 sin(ma)

sin(ma)

a+1)(—d)"Gy(0) +2 (a+2)(— d)"?G5(0)

k—1
K +1

+ [cot(m) —7 ] (- a)’G3(0) = 0. (54b)

Using equations (52a) and (53a) ; and 7, can be obtained as — 1/2 and § can be
obtained from (54a). As for a, (52b), (53b) and (54b) constitute an eigenvalue problem
which yields a characteristic equation to determine o and two additional equations that

relate G;(0), Go(0) and G3(0). The eigenvalue problem can be expressed in the

} (55)

The coefficients a;;(c:) are given in Appendix A. Assuming G1(0) # 0, G2(0) # 0 and

following form using (52b), (53b) and (54b),

0  axp(a) axn(a)| |+ —dGe(0)
azi(a) asx(a) ass(d)] | (- 0)G4(0)

[all(a) 0 als(a)jl \% “dGl(O) [

O OO

G3(0) # 0 and solving the eigenvalue problem given by (55) we obtain the following

characteristic equation,

202 + 4o + 1 — cos(ne) «
(k + 1)sin?(7a)

x (n(4a® + 10a + 5 + (k — 1)cos(ma) + K(2a + 3)) + (x + 1)sin(ra)) = 0. (56)

The eigenvalue problem (55) yields two more equations which relate G1(0), G2(0) and

G5(0) as follows:

o/ i Ee e e N,

a0/ = = T = Ga(0) =’ 7
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For 1) # 0 the characteristic equation (56) can further be reduced to following form,

n(4a? + 10a + 5 + (k — 1)cos(ma) + £(2a + 3)) + (k + 1)sin(ra) = 0. (58)

In order to verify the solution method and the resulting characteristic equation, the
analysis to determine the strength of singularity is also carried out by considering a 90°
elastic wedge and using Mellin transformation. It is shown that equation (58) can also be
obtained using Mellin transforms. This analysis is described in Appendix B. Strength of
singularity o is a function of  and friction coefficient 7. Equation (58) can be solved to
determine o for different values of x and 7. 3 is the strength of singularity at the other
end of the contact area, and for the case b < 0 strength of singularities for the contact
stresses are 3 and w. For a flat stamp, the stresses are singular at both ends of the contact
area and for this case equation (58) is solved for different values of friction coefficient
and for v = 0.25. The results for o, B and w are shown in Figure 6. If the friction
coefficient is greater than zero the tangential force is directed as shown in Figure 1 and o
is the strength of singularity at the trailing end of the contact. Figure 6 shows that, if
n > 0, a is real and negative and it is a strong function of the friction coefficient 7. For
the frictionless case, @ = 0 and no power singularity exists, and for higher values of
friction coefficient there is a strong singularity at the trailing end of the contact. w is the
strength of singularity at the trailing end of the contact for b < 0 and « is less than w for
larger values of friction coefficient. > 0 is the practically important case, because in the
other case, i.e., 7 < 0, crack faces are forced to close by the tangential force. In this case
no singularity exists for b = 0, instead there isa complex zero, and its imaginary and real
parts are shown in Figure 6. The effect of the Poisson's ratio on the strength of singularity,
a is shown in Figure 7. As can be seen, the effect of the Poisson's ration is not very
significant especially if 7 > 0, but the singularity becomes stronger as v decreases. If

n = 0, no power singularity exists hence for this case the integral equations have to be
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checked in order to determine the conditions not to have a logarithmic singularity. In this

case the unknown functions can be expressed in the following form

Al =Git)(t—d)?,  d<t<0, (592)
fot) = Go(t)(t — )%, d<t<O, (59b)
£3(t) = G3(t)(t — a)P, a<t<O. (59¢)

The asymptotic behavior of the sectionally holomorphic functions near point 0 is found to

be,

In(z), ws(z)g——vln(z)- (60)

The asymptotic behavior of the Cauchy integrals can then be written as follows:

K
~m(a)

05r -

a B 0.0

I Re(a)

0.5 F I Pt ”" N

5 :

-1.0 - SRR B U P S S

-1.0 -0.5 0.0 0.5 1.0

Coefficient of friction, n
Figure 6: Strengths of singularity, o, 8 and w, v = 0.25.
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1.0 71— 1
o g Im(a)
0.5 A il
—— 7 A\
a 0.0 :\
Re(q)
i v=0.10 _ |
0.5 F e v=0.30 N,
—— v=045 ]
qole e e b
-1.0 0.5 0.0 0.5 1.0

Coefficient of friction, n
Figure 7: Effect of the Poisson's ratio on strength of singularity, c.

1 Ofl(t)dtg F1(0)

mJat—y v —d

1 R0,  F0)
=/, t_ydt=7r ,—_dln(—y),
1 ofs(t)dt F3(0)

) iy o 7r(_—a)ﬁln(—y). (61c)

In( — y), (61a)

(61b)

Using the partial fractions (48) and (60), integral equations (22) are examined and it is
seen that logarithmic terms cancel in equations (22a) and (22b). However, the analysis
also shows that, in equation (22c¢) in order to cancel the logarithmic singularity following

condition has to be satisfied,

Ga(0)V ~d = ~ 7Gs(0)( - a)’. (62)
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Hence, if 7 = 0, there is no power singularity, but there is a relationship between G(0)

and G3(0) as given by (62)."
4. Numerical solution of the singular integral equations

In this section, numerical solution methods will be developed to solve the singular
integral equations given by (22) in order to determine the stress intensity factors at the
crack tip and contact stresses. Three cases will be considered. First, we will consider a
flat stamp, with b = 0. The strength of singularity o, determined in section 3.2, will be
used in this solution. In the second case, a flat stamp with b < 0 will be considered.
Finally, a numerical solution method will be developed for a circular stamp with smooth
end points. The numerical solution methods are based on the expansion of the unknown
functions in Jacobi polynomials. Using the properties of Jacobi polynomials, Cauchy
integrals can be evaluated in closed form. The integral equations will then be reduced to a
system of linear algebraic equations which can be solved to determine the stress intensity

factors and contact stresses.
4.1 Flat stamp, b = 0

The geometry of the problem is shown in Figure 1. In this section onlythe problem
for b = 0 will be considered. The methods of solution for both problems b = 0 and b < 0
are similar; but in the case of b = 0, the strength of singularity v must be considered and

there are compatibility relations between G;(0), G2(0) and G3(0) that must be satisfied

* Note that for n =0, the 90-degree wedge z <0,y <O under boundary conditions v(z,0) =0,
0zy(2,0) = 0, 022(0,y) = 0, 05(0,y) = 0 are equivalent to an elastic half plane z < 0 loaded in such a
way that y = O is a plane of symmetry and near z = 0, y = 0 surface tractions ¢,,(0,), 04y(0, y) are zero.
Hence, at and near z = 0, y = 0 the stresses are bounded.
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as shown in section 3.2. In order to solve the problem numerically, first the integral

equations (22) and equation (1g) are written in normalized form as follows

1
- "/ g,: _—31 / Gu(r, s1)gi(r Cl?”+/ Gha(r, s1)gs(r)dr =0, (632)
LT
1
- _/ 92 / Gao (T, 82)ga(r dT+/ Gos(r, s2)gs(r)dr =0, (63b)
m 1 T — 52

1 1 -1 1/t
[ Gatrsasrar+ [ Gatr,sitryir - (e - - [ Edr =
-1 -1

+1 TJ_1T — 83
(63c)
1
/ gs(r)dr = — 2, (63d)
-1
where, following transformations are used
d d :
y= -2—51 + 2 (for equation 22a), (64a)
d d .
y= —2—52 + 2 (for equation 22b), (64b)
a a .
T = 533 + 3 (for equation 22c), (64c)
and,
a d d
a(r)=-ph (-?:r +5 ) (65a)
a d d
— _ %202 6
g2(r) Pf2(2r+2)’ (65b)
a a a
g3(r) = — ‘};f3<‘2'7”+ -2-> (65¢)

Note that, right-hand side of equation (63c) is zero, since for a flat stamp normal

displacement beneath the stamp is constant. The normalized kernels G;; are given in
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Appendix C. In order to solve the problem, the unknown functions are expanded into

series of Jacobi polynomials in the following form

alr)=Q0-r)"21+ r)“iAnP,E”l/z’a)(r), (662)
n=0
() = (1-r) 1+ r)“iBnP,E*/"”“)(r), (66b)
n=0
gs(r) =1 -7’1+ r)“f:cnp,gﬁm. (66¢)
n=0

P, is the Jacobi polynomial, and the exponents o and § are given by equations (56) and
(54a) respectively. Substituting (66¢) in equilibrium equation (63d) and evaluating the

integral we obtain the first constant in the expansion of g3(r) in the following form,

_ 22D+ 1) (a+1)

where T is the Gamma function. Substituting (66) in (63) evaluating the Cauchy principal
value integrals in closed form, truncating all the infinite series at n = N, and using (67),

integral equations (63) can be written in the following form,

Y An Fln(a>F(n +1, —n+ 1 - a, ?)‘; 1- Sl) + hin(s1) ¢ + 3 Crhizn(s1) =
n=0 2 2 2 n=1
= — Cohso(s1), -1<s1 <1, (682)
N N
1 . 3 1- S9
;Bn{an(a)F(n +1, —n+ 5~ «, > ——2—) + h22n(52)} + ;Cnhzgn(sz) =
= — Cohggo(Sg), —1<s8 <1, (68b)
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N N
ZAnhE»ln(s?’) + ZBnh32n(53) +

n=0 n=0
N 1—.5‘3
+ZC’nF3n(a)F(n+1, —n—0F—a;1-0; 5 )=
n=1
1 —
= —Cly(e)F(l, —f—o;1-F—22), —l<s<l, . (68¢)

where F() is the Hypergeometric function, for the definition and mathematical properties
of the Hypergeometric function see for example Abramowitz and Stegun [3] and for the
numerical computation of the Hypergeometric function one may refer to Luke [4].
Functions h;j,(s;), (i, = 1,2,3) are given in Appendix C. The formulas used in the
evaluation of the Cauchy principal value integrals are given in Appendix D. Functions

[ (i = 1,2, 3) are given by,

_ _ 2@ 1P(—1/2)T(n+a+1)

_ 2eHAT(BM(n+a+1)

Fan(2) = al(n+a+F+1) (69%)

In the solution of the flat stamp problem with b = 0, compatibility conditions given by
(57a), (57b) and (62) must also be considered. Substituting (66) in the compatibility

conditions and truncating the infinite series, for n # 0 we obtain the following additional

equations

N an-a /1) "B/ N

S A PCA(- 1) = () (5) <5) > CaPP (= 1), (702)
n=0 n=0

N ax-o /1 -(B+1/2) N

S BB~ 1) = p(a) (3) (5) 3 PP (- 1), (70b)
n=0 n=0

where,
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_ neos(ma/2)(2 + a) + sin(me/2)(1 + «)

71
@) 202 + 4a + 1 — cos(7a) ’ (712)
nsin(ra/2)(1 + @) — cos(mo/2)a
= . 71b
P(@) 202 + 4o + 1 — cos(mar) (710)
If n = 0, there is only one additional condition
N _ —(8+1/2) N
lran—2(1
WPV ()= — o= = PR (1), 72
> BPC-1 = -5(3) (3 > CuP{P(=1) (1)

Equations (68) can now be numerically solved together with (70) or (72) to determine the
unknown constants A,, B, and C,.In the numerical solution the equations are converted
to a linear system of algebraic equations by using collocation points. If 7 # 0, N
collocation points are used for (68a) and (68b) and considering (70) we have two sets of
(N + 1) equations. Since, Cj is known, (V) collocation points are used for (68c), hence
total number of linear equations is (3N + 2) for (3N + 2) unknowns. The following

roots of the Chebyshev polynomials are selected as collocation points,

2t—1
sli fond 32i fomd 531 = COS(W—(—;TV———)'), 7/ = 17 ceey N- (73)

Note that if n =0, there is one compatibility equation and in this case (N +1)

collocation points are used for equation (68a) and s); is in the following form,

. (26 — 1) .
sli—cos(z(N_*_l)), i1=1,....,N+1. (74)

Stress intensity factors at the crack tip

Modes I and II stress intensity factors at the crack tip are defined by

k1 = lim/2(d ~ 9)022(0,) (75a)
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kir = ;i_rgv 2(d — y)ozy4(0,9). (75b)

The dominant terms, for 0., (0, y) and 0,,(0, y) near d can be written as follows:

0

02:(0,y) a% ; fti(_ng, (762)
0 d

02y(0,9) = = /d —’f%%f (76b)

Considering the definition of the sectionally holomorphic functions given by, (25a,b) the

asymptotic behavior of (76) near d can be written as,
02x(0,) = G1(d)( = d)*(d = )%, (77a)
0ay(0,9) = Ga(d)( — d)*(d —y) ™%, (77b)

Note that (77) is valid for, v < d and (d — y) — 0. Using the equations given above, and

(65a,b), and (66a,b) normalized stress intensity factors can be expressed as follows,

kl —a _ a\/—g - (-1/2,a)
VP =2 E;An& (1), (78a)

ki —a a\/EN (-1/2,0)
5 =2 aZBnPn (1). (78b)

n=0

After solving the system of linear equations for A,, B, and C,, stress intensity factors
can be obtained using equations (78) and contact stresses can be obtained using equation

(66¢).
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4.2 Flat stamp, b < O.

The geometry of the problem is shown in Figure 1. Integral equations (22) can be

written in normalized form as follows:

1 . 1 1
_ _1_ _nz}—(r_)d_r +/ My (r, s1)my(r)dr +/ Mi3(r, s1)ms(r)dr =0,
-1 -1

mjp T— 81

1 d 1 1
— }_ M + / M22(r, 32)m2(7‘)d7‘ —-}—/ Mgg(?", 82)m3(7')d7” = 0,
-1 -1

TSy T— 82

1 1
[ Matr, sy + [ Mintr,sopmatrrar = ¢
-1 -1

/img('r)dr = -2

In this case following transformations are used,

y= 531 + g, (for equation 22a),
Y= —3-52 + g, (for equation 22b),
T = 2 ; b 83 2 ; b, (for equation 22c),
and,
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The normalized kernels M;; are given in Appendix C.The unknown functions are

expanded into series of Jacobi polynomials as follows:

ma(r) = (1— ) V23 A, B ), (322)
n=0
my(r) = (1~ r)‘”?ijnP,E‘“m (r), (82b)
n=0
ma(r) = (1 - A1+ r)wiCnPTEﬁ""). (82¢)
=0

The exponents 3 and w are given by equations (38) and (39) respectively and note that,
B<0,w<0, B+w= —1. Substituting (82c) in equilibrium equation (79d) and

evaluating the integral we obtain the first constant in the expansion of mgs(r) as follows:
Cy = 2sin(nf) /. (83)

Substituting (82) in (79), evaluating the Cauchy integrals in closed from and truncating

the infinite series at IV, we obtain the following equations,

13 1-s N
;A {Q F(n+1, —n+ 373 g )+p11n(51)}+;cnpl3n(51) =
= — Copzo(s1), -1<s <1, (84a)
13 1—32

ZB{QF(n+1—n+22 —52) + Pan(s2) | + chmnsQ

n=0

= - Cop230(52) —-1<sy<1, (84b)
Anpsin(s3) + ) Brnpsn(ss) C. P27 (s3) = 0,
nz_% Z 2 sin 7rB Z
—1l<s3<]1. (84c)
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Functions p;j»(s:), (3,5 = 1,2,3) are given in Appendix C. The formulas used in the
evaluation of the Cauchy principal value integrals are given in Appendix Dand €2, is

given by

T(—1/2)0(n+1)

" a/a(n+1/2) ¢

By using the collocation technique equations (84), can now be converted to a linear
system of algebraic equations. There are a total of (3N + 2) unknowns in this problem.
Hence in the numerical solution (N + 1) collocation points are used for each of the
equations (84a) and (84b) and (IN) collocation points are used in equation (84c). The

following roots of Chebyshev polynomials are selected as the collocation points,

81; = S9; = COS(%%), i=1,.,N+1, (86a)
83 = cos(ﬁ%jv_—l)), i=1,...,N. (86b)

Stress intensity factors at the crack tip

Definition of the modes I and II stress intensity factors are given by equations (75).
The dominant terms, for 0., (0, y) and 0,,(0, y) near d are given by equations (76). Using

these equations, asymptotic behavior of the stresses near the crack tip can be written as,
022(0,y) = Fi(d)(d —y)/?, (873)
02y(0,y) = Fa(d)(d — y) /2. (87b)

By using the equations (81a), (81b), (82a), (82b) and (87) normalized stress intensity

factors at the crack tip can then be expressed as follows:
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k[\/ —d —d N (_1/20)
= ! 88
P (b _ a) nEZO:AnPn (1)’ i ( a)
kirv —d —d ZN (~1/2,0)
P (b—a) n_OBnPn o (859)

After solving the linear system of equations, stress intensity factors can be determined

using (88) and contact stresses can be obtained using (82¢).

4.3 Circular stamp

The geometry of the problem is shown in Figure 8. A homogenous half-plane is
indented by a rigid stamp of circular profile. The radius of the stamp is denoted as R, and
it is assumed that contact area (b — a) is much smaller then the radius R. c denotes the
position of the centerline of the stamp. In this problem the contact area is not constant and
it depends on the force applied to the stamp. There are four parameters in the contact
problem which are P, a, b and c. Once two of these parameters are specified, the other

two have to be determined from the solution of the problem.

Figure 8: Circular stamp problem
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If we assume that P and one of the end points for instance a is known, then b and ¢ can

be determined using an iterative solution method. In order to avoid iterations and longer
computation time, in this study @ and b will be specified and corresponding values of P
and ¢ will be determined without iterations. Considering Figure 8, if contact area is much
smaller than the radius R, derivative of the normal displacement v(z, 0) can be written in

the following form,

m@m=$§c, a<z<b, (89)

oz
then, the integral equations given by (22) and the equilibrium equation given by (1.9) can

be written in normalized form as follows:

' d
- l/ 'U;l T)S T / Wi (r, s1)wi( r)dr+/ Wis(r, s1)ws(r)dr =0, (902)
1 T8
1 1
- _/ — / Waa(r, s2)wa(r dr—l—/ Was(r, s9)ws(r)dr =0, (90b)
1 T 82

1 1 kK—1
/—lel (r, 83)wy(r)dr + /—1W32(7‘, s3)ws(r) e (s3)

1 [ ws(r) 2 sa-—b at+b 2c
- = dr = ( ——) 90
7r/_1r——33r k+1\ R 5+ R R (90c)
—-b
(90d)
In this case following transformations are used
d d .
y= —2—51 + 5 (for equation 22a), (91a)
d d .
y=3s -+ > (for equation 22b), (91b)
—b b
T = a S3 et (for equation 22c), (91c)
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and,

wi(r) = %fl (gr + g- ) (922)
wy(r) = i—ﬁ(%w g) (92b)
ws(r) = %f?,(a;bw “;b). (92¢)

The normalized kernels W;; are given in Appendix C. The unknown functions are

expanded into series of Jacobi polynomials in the following form,

wnlr) = (1= )23 4, PO, 932)
n=0
wy(r) = (1 - r)‘”?ijnPé““w(r), (93b)
n=0
wa(r) = (1—r)f(1+ r)“’io:CnP,Sﬁ’“’)(r). (93c)
n=0

The exponents 3 and w are given by equations (38) and (39) respectively and in this case
B>0,w>0 and B+w=1. Substituting (93c) in equilibrium equation (90d) and

evaluating the integral, normalized force can be expressed in the following form,

P a-b 2w(l —w)m
—_— = = — . 4
pR 2R Cobo, b0 sin(7w) S

In the numerical solution, a/R, b/R and d/R will be specified and once the problem is
solved the corresponding value of the normalized force will be obtained by using the
equilibrium equation, i.e., equation (94). In order to determine c/R we will consider the
consistency condition. First consider the last two terms on the left-hand side of equation

(90c), they can be written in the following form,
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k=1 1Y ws(r)
F(Sg) =7 17’]’(.03(83) -+ ;/_IT‘ — Ssd’r‘. ) (95)

If F(s3) is divided by the weight function and integrated from —1to 1, following result

is obtained

! F(Sg) _
/-1 (1- s3)P(1+ 53)“’d83 =0 )

Other terms in equation (90c) must also satisfy this condition, and integrating the other

terms we obtain the following expression,

~b +b 2
ZA Wain + ZB Wan = ( -2t aR N _Rc') sin(:’w)7 7

n=0

W31n / / W31 ’I‘ 83 7‘)—1/2PT£_1/2’0)(T’)dT‘}(1 - 83)_ﬁ(1 + 53)_wd53,

(982)

W= [ {[ Walryso)0 = 17RO )ar} (1 - ) (1 05) s

(98Db)
Once the problem is solved for a given a/R and b/R, c¢/R can be obtained using
equation (97). Substituting (93) in (90a,c), evaluating the Cauchy integrals in closed
from, eliminating ¢/R from (90c) using the consistency condition given by (97) and

truncating the infinite series at NV, we obtain the following equations:

N —
ZA {Q F(n+1, —n+ % g:l 23 ) + qun(s } chfhan s1)

n=0

-1<s; <1, (99a)
13 1-s
E B, {Q Fln+1, —n+43;5; 2) + gaza Sz)}-i—g Crg2sn(s2) = 0,
2°2 2 -
n=0 n=0
—l<sy <, (99b)
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iAn (Q31n(33) Sm(mu) W31n) + ZB (Q32n $3) — Sm(:w) W32n)

n=0 n=0

4 a—b_
CuPrl ™ “9(s3), —1< s3<1. 99
251n (mw) Z n+l c+1 R 1 (s3), 53 < (99c¢)

Functions g;;(s;), (3,j = 1,2,3) are given in Appendix C. The formulas used in the
evaluation of the Cauchy principal value integrals are given in Appendix Dand Q, is
given by equation (85). Equations (99) can now be converted to a linear system of
algebraic equations using collocation points. There are a total of (3N + 3) unknowns in
this problem, hence (N + 1) collocation points are used for each of the equations. The

following roots of the Chebyshev polynomials are selected as the collocation points,

21—1
1 = oy = 835 = cos(g-((-ﬁ), i=1,, N+ 1 (100)

For given values of a/R, b/R and d/R equations (99) can be solved and normalized

force P/uR and ¢/ R can be obtained using equations (94) and (97) respectively.

Stress intensity factors at the crack tip

Definition of the modes I and II stress intensity factors are given by equations (75).
Using the sectionally holomorphic functions, asymptotic expressions can be derived for

the stresses and the stress intensity factors can be shown to be in the following form,

P RC’OHOa——bZA P2Y), (1012)
—a—= Rcoeoa— ZB P-1/20 1 (101b)

Contact stresses can be obtained using equation (93c).
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5 Results

In this section, numerical results obtained for the three different cases will be
presented and the effect of the friction coefficient 7, stamp location and crack length on
the stress intensity factors at the crack tip and contact stresses will be examined. The
numerical solution methods are described in Section 4. Computer programs are developed
for the implementation of the numerical procedures and results are presented in the
following sections for flat and circular stamps. Before, giving the results for the stress
intensity factors, we examine surface stresses in the half plane in the absence of a crack.
Figures 9 and 10 show the contact stress o, (z,0) and in-plane stress 0,.(z, 0) for a half-
plane loaded by a circular stamp. The expressions for the stresses in the absence of a
crack are obtained in closed form as shown in Appendix E. Figure 10 shows the tensile
peak for o, (x,0) at the trailing end of the contact region. At the leading end in-plane
stress is compressive. The tensile peak at the trailing end of the contact area is the reason
of surface crack initiation in sliding contact problems. In the following sections we will
present the results for stress intensity factors and contact stresses for a half-plane

containing a crack at the trailing end of the contact area.

5.1 Flat stamp,b =0

Figures 11 and 12 show a comparison of the results for normalized mode I and II
stress intensity factors with those of Hasebe et. al [5] for the case of a flat stamp with
b=0 and v = 0.25. Mode I and II stress intensity factors are given in intervals,
d/a =0...1 and a/d = 1...0. Hasebe er. al [5] solved this problem using the complex
stress function technique and by mapping the half-plane with a crack into a unit circle. As -

also stated in the paper by Hasebe et. al [5], since the half-plane is mapped into a unit
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circle by using a rational mapping function, the crack tips at y = 0 and y = d, have
roundness after mapping. However, as can be seen in Figures 11 and—l2 the results agree
very well. In the paper mentioned, the signs of the mode II stress intensity factors are
given as negative, but for a flat stamp with b = 0, it is clear that mode II stress intensity
factors have to be positive at the crack tip. Figures 11 and 12 show that, for low values of
friction coefficient, i.e., for a smaller tangential force, mode I stress intensity factors are
negative. As the tangential force increases mode I stress intensity factors increase and
they become positive. Hence, if the applied tangential force is not sufficiently large there
will be contact between the crack faces and crack closure will occur. In this case, crack
faces transfer compressive normal stresses and the assumption of zero crack surface
tractions is not valid. Figure 12 shows that, for a flat stamp with b = 0, mode II stress
intensity factors are positive for all values of friction coefficient which is an expected
result and if the applied tangential force is smaller,mode II stress intensity factor
increases. During numerical solution, it was observed that as a/d or d/a approaches zero,
it is becoming increasingly difficult to obtain convergent results, but using relatively
larger number of Gaussian points and weights in the numerical integration of the kernels
of integral equations, convergent results could be obtained. In Figures 13 and 14 a flat
stamp with b = 0 is considered and stress intensity factors are normalized with respect to
contact area length a, in both of the intervals d/a = 0...1 and a/d = 0...1. Hence for a
constant contact area length a, the effect of crack length d on the stress intensity factors is
obtained. It can be seen that, as d — oo, both modes I and mode II stress intensity factors
go to zero. It is known that when a brittle material is indented by an indenter which at the
same time translates laterally across the surface and applies frictional forces, tensile
stresses intensify at the trailing edge, and this results in the generation of partial cone
cracks, (see for example Lawn [6]). The cone cracks extend into the material and they

bend backwards, i.e. opposite to the applied tangential force direction. An analysis of the
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results given in Figure 14 shows that this is the case for the problem under consideration.
Mode II stress intensity factors are positive for all values of friction c—oefﬁcient and crack
length. If we consider a small element at the crack tip as shown in Figure 15, the crack
will bend backwards and it will propagate in a direction opposite to the applied frictional

force.

k11>0

A, 7
o) \ |

Xy
/

Figure 15: Direction of crack growth

Figures 16 and 17 show the effect of the Poisson's ratio on mode I and II stress intensity
factors for a constant friction coefficient n = 0.8. The effect of the Poisson's ratio on
mode I stress intensity factors is not significant as shown in Figure 16. The effect on
mode II stress intensity factors, however, is larger especially for shorter crack lengths and
as the Poisson's ratio decreases mode II stress intensity factors increase. Figures 18 and 19
show the normalized contact stresses for a flat stamp with b = 0. The contact stresses are
infinite at the ends of the contact area except for the case 17 = 0, for which there is no

singularity at the end z = 0.

5.2 Flat stamp, b < 0

The effect of the stamp location on mode I and mode II stress intensity factors for a

flat stamp are shown in Figures 20 and 21. In these figures (a — b)/d is kept constant as
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0.1 and v = 0.25, and stress intensity factors are given for different values of b/d. Since,
stress intensity factors are normalized with respect to d, the effect of :the stamp location b
on stress intensity factors can be clearly observed in these figures. The full circles at
b/d =0 are obtained using the strength of singularity o and the numerical solution
method described in section 4.1, while the full lines are obtained using the numerical
solution method described in section 4.2. It can be seen that, full lines approach the
circles at b/d = 0, which is a verification of both of the numerical methods developed.
As b increases from 0, mode I stress intensity factors initially increase and they go
through a peak for larger values of friction coefficient #. Further increase in b results in a
decline in mode I stress intensity factors and they approach zero for larger values of b/d
which is an expected result. Similarly, mode II stress intensity factors approach zero, for
larger values of b/d. It can also be seen that, if there is no tangential force, i.e., n =0,
mode I stress intensity factors are negative and mode II stress intensity factors are positive
for all values of b/d. In Figures 22 and 23 the effect of the stamp location on mode I and
mode II stress intensity factors are shown for (a — b)/d = 1.0 and v = 0.25. Figures 24
and 25, show the effect of the stamp location on stress intensity factors for
(a —b)/d = 10.0 and v = 0.25. The trends are similar and self-explanatory in Figures
22-25. Figures 26 and 27 show the effect of the Poisson's ration on mode I and mode II
stress intensity factors for (a — b)/d = 1.0 and n = 0.8. Figures show that for this value
of (a —b)/d, the effect of the Poisson's ratio is not significant, however for a larger
value of (a — b)/d which is taken as 10.0 in Figures 28 and 29, the effect of the Poisson's
ratio is larger. Mode I stress intensity factors increase as v decreases as shown in Figure
28. The effect on mode II stress intensity factors is shown in Figure 29. Contact stresses
for different values of (a — b)/d are shown in Figures 30-32. Contact stresses are singular
at the end points of the contact area. Figures 30-32 show the effect of the friction
coefficient on contact stresses
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5.3 Circular stamp

Mode I and II stress intensity factors for a circular stamp are shown in Figures 33 and
34 for different values of b/R. In these figures (b — a)/R is kept constant as 0.05 and
normalized crack length d/R is — 0.1. It can be seen that the variation of the normalized
stress intensity factors is similar to that of the flat stamp case. Stress intensity factors
approach zero, as b/ R increases. In the solution of the circular stamp problem the stress
intensity factors are obtained for known values of a/R,b/R and d/R then the
corresponding value of the normalized force P/uR is determined using the equilibrium
equation. Variation of the normalized force with b/R, for (b—a)/R =0.05 and
d/R = — 0.1 is shown in Figure 35. It can be seen that normalized force approaches a
constant value as b/R decreases and this constant value can be obtained by solving the
contact problem in a homogenous half-plane without a crack, which has a closed form
solution. This solution is shown by the full circles in Figure 35, and our numerical results
approach the closed form solution for small values of b/R. Closed form solution for the
contact problem is given in Appendix E. As b/R goes to zero, normalized force increases
for smaller values of friction coefficient and it decreases for larger values. The increase
for smaller values is due to more compressive stresses at the crack tip, as the tangential
force decreases crack closure occurs and the normal force required for contact increases.
For larger values of friction coefficient, mode I stress intensity factors are positive and
normalized force decreases significantly with the increase in b/ R. It can also be seen that,
for a given contact length the normal force required is smaller for a larger friction
coefficient. Figure 36 shows the contact stresses for a/R = — 0.1, /R = —0.15 and
d/R = — 0.1. The contact stresses are zero at the ends of the contact area and the effect
of the friction coefficient on contact stresses is shown in this figure. Another set of results

for stress intensity factors, normalized force and contact stresses are shown in Figures 37-
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40, for (b—a)/R = 0.1. The trends are similar to those given in Figures 33-35. The
effect of Poisson's ratio on stress intensity factors and normalized for>ce is also examined.
Figure 41 and 42 show the modes I and II stress intensity factors for different values of
Poisson's ratio and for n = 0.8 and (b — a)/R = 0.1. It can be seen that the results are
very close for all three values of the Poisson's ratio. However, Figure 43 shows that the
effect of the Poisson's ratio on normalized force is significant and the normal force
required is larger for a larger Poisson's ratio. Figures 44-46 show the effect of the crack
length d/R on stress intensity factors and normalized force for a circular stamp whose
location is given by b/R = — 0.05 and a/R = — 0.1. Both normalized modes I and II
stress intensity factors approach zero as d/R go to zero and after a steep variation in
stress intensity factors for large values of d/R, they eventually go to zero for small
values of d/R as seen in Figures 44 and 45. Figure 46 shows the variation of the
normalized force with crack length, it can be seen that for small friction coefficients,
P/uR initially increases as crack length increases and then goes to a constant value as
crack length increases further. For higher values of friction coefficient normalized force
decreases initially and then approaches a constant value. Figures 47-49 show the
variation of stress intensity factors and normalized force with crack length, for
b/R= —0.1 and a/R = — 0.05. The results are similar to those obtained in Figures

44-46.
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Figure 9: Contact stress, o,y(z,0) for a homogeneous half-plane indented by a circular
stamp as shown in Figure 8. v = 0.25,d = 0, (b — a)/R = 0.1.
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Figure 10: In-plane stress, 0., (z,0) for a homogeneous half-plane indented by a circular
stamp as shown in Figure 8. v = 0.25,d =0, (b —a)/R = 0.1.
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Figure 11: Mode I stress intensity factors for an edge crack in a homogeneous half-plane
indented by a flat stamp as shown in Figure 1,b = 0, v = 0.25.
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Figure 12: Mode II stress intensity factors for an edge crack in a homogeneous half-plane
indented by a flat stamp as shown in Figure 1, b = 0, v = 0.25.
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Figure 13: Mode I stress intensity factors for an edge crack in a homogeneous half-plane
indented by a flat stamp as shown in Figure 1, b = 0, v = 0.25.
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Figure 14: Mode II stress intensity factors for an edge crack in 2 homogeneous half-plane
indented by a flat stamp as shown in Figure 1, b = 0, v = 0.25.
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Figure 16: Effect of the Poisson's ratio on Mode I stress intensity factors for an edge
crack in a homogeneous half-plane indented by a flat stamp as shown in Figure 1, b =0,
n=0.8.
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Figure 17: Effect of the Poisson's ratio on Mode II stress intensity factors for an edge
crack in a homogeneous half-plane indented by a flat stamp as shown in Figure 1, b = 0,
n = 0.8.
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Figure 18: Contact stresses for a homogeneous half-plane with an edge crack indented by
a flat stamp as shown in Figure 1, b = 0, v = 0.25,d/a = 0.4.
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Figure 19: Contact stresses for a homogeneous half-plane with an edge crack indented by
a flat stamp as shown in Figure 1. v = 0.25, a/d = 0.4.
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Figure 20: Mode I stress intensity factors for an edge crack in a homogeneous half-plane
indented by a flat stamp as shown in Figure 1. (a — b)/d = 0.1, v = 0.25.

b/d

Figure 21: Mode II stress intensity factors for an edge crack in a homogeneous half-plane
indented by a flat stamp as shown in Figure 1. (a — b)/d = 0.1, v = 0.25.
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Figure 22: Mode I stress intensity factors for an edge crack in a homogeneous half-plane
indented by a flat stamp as shown in Figure 1. (a — b)/d = 1.0, v = 0.25.
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Figure 23: Mode II stress intensity factors for an edge crack in a homogeneous half-plane
indented by a flat stamp as shown in Figure 1. (a — b)/d = 1.0, v = 0.25.
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Figure 24: Mode I stress intensity factors for an edge crack in a homogeneous half-plane
indented by a flat stamp as shown in Figure 1. (a — b)/d = 10.0, v = 0.25.
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Figure 25: Mode II stress intensity factors for an edge crack in a homogeneous half-plane
indented by a flat stamp as shown in Figure 1. (a — b)/d = 10.0, v = 0.25.

60




0.16 [T

0.14:
0.12:

kiv/ —do.10 |
P .
0.08 |

0.06 |

0'04-1-1111.I|..I1.-I.1|
0 2 4 6 8 10

b/d

Figure 26: Effect of the Poisson's ratio on mode I stress intensity factors for an edge
crack in a homogeneous half-plane indented by a flat stamp as shown in Figure 1.
(a —b)/d =1.0,7=0.28.
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Figure 27: Effect of the Poisson's ratio on mode II stress intensity factors for an edge
crack in a homogeneous half-plane indented by a flat stamp as shown in Figure 1.
(a—b)/d=1.0,7=0.38.
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Figure 28: Effect of the Poisson's ratio on mode I stress intensity factors for an edge
crack in a homogeneous half-plane indented by a flat stamp as shown in Figure 1.
(a —b)/d =10.0,n = 0.8.
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Figure 29: Effect of the Poisson's ratio on mode II stress intensity factors for an edge
crack in a homogeneous half-plane indented by a flat stamp as shown in Figure 1.
(a —b)/d =10.0,7=0.28.

62




(z—(b+a)/2)/(a—b)/2
1.0 0.5 0.0 0.5 -1.0

oy(z,0)

P/(b—a)-1.0

-1.5

Figure 30: Contact stresses for a homogeneous half-plane with an edge crack indented by
a flat stamp as shown in Figure 1. v = 0.25,b/d = 0.4, (a — b)/d = 0.1.
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Figure 31:Contact stresses for a homogeneous half-plane with an edge crack indented by
a flat stamp as shown in Figure 1. v = 0.25,b/d = 0.4, (a — b)/d = 1.0.
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Figure 32: Contact stresses for a homogeneous half-plane with an edge crack indented by
a flat stamp as shown in Figure 1. v = 0.25,b/d = 0.4, (a — b)/d = 10.0.

ol

Figure 33: Mode I stress intensity factors for an edge crack in a homogeneous half-plane
indented by a circular stamp as shown in Figure 8. (b —a)/R =0.05, d/R = — 0.1,
v = 0.25.
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Figure 34: Mode II stress intensity factors for an edge crack in a homogeneous half-plane
indented by a circular stamp as shown in Figure 8. (b —a)/R = 0.05, d/R = - 0.,
v = 0.25.

2.00e-3 ————T————

1.80e-3

1.60e-3

P 1.40e-3
uR e

1.20e-3

1.00e-3

T

8.00e-4 L1
0.15 -0.10
b/R

Figure 35: Normalized force for a homogeneous half-plane containing an edge crack and
indented by a circular stamp as shown in Figure 8. (b—a)/R = 0.05, d/R = — 0.1,
v =0.25.
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((b+a)/2—2)/((b—0a)/2)
Figure 36: Contact stresses for a homogeneous half-plane with an edge crack indented by

a circular stamp as shown in Figure 8. v =025, d/R= —0.1, b/R= —0.1,
a/R= —0.15

1.0 08 06 -04 -02 00

b/R
Figure 37: Mode I stress intensity factors for an edge crack in a homogeneous half-plane

indented by a circular stamp as shown in Figure 8. (b—a)/R=0.1, d/R= —0.1,
v =0.25.
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Figure 38: Mode II stress intensity factors for an edge crack in a homogeneous half-plane
indented by a circular stamp as shown in Figure 8. (b—a)/R =0.1, d/R= —0.1,
v = 0.25.
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Figure 39: Normalized force for a homogeneous half-plane containing an edge crack and
indented by a circular stamp as shown in Figure 8. (b—a)/R =0.1, d/R= —0.1,
v =0.25.
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Figure 40: Contact stresses for a homogeneous half-plane with an edge crack indented by

a circular stamp as shown in Figure 8. v =025, d/R= —0.1, b/R= —0.1,
a/R= —02.
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Figure 41: Effect of the Poisson's ratio on mode I stress intensity factors for an edge
crack in a homogeneous half-plane indented by a circular stamp as shown in Figure 8.
(b—a)/R=0.1,7=08,d/R =-0.1.
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Figure 42: Effect of the Poisson's ratio on mode II stress intensity factors for an edge
crack in a homogeneous half-plane indented by a circular stamp as shown in Figure 8.
(b—a)/R=0.1,7=08,d/R= —-0.1.
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Figure 43: Effect of the Poisson's ration on the normalized force for 2 homogeneous half-
plane containing an edge crack and indented by a circular stamp as shown in Figure 8.
(b—a)/R=0.1,d/R= —-0.1, n=0.28.
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Figure 44: Mode I stress intensity factors for an edge crack in a homogeneous half-plane
indented by a circular stamp as shown in Figure 8. b/R = —0.05, a/R = —0.1,
v = 0.25.
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Figure 45: Mode II stress intensity factors for an edge crack in a homogeneous half-plane

indented by a circular stamp as shown in Figure 8. b/R = —0.05, a/R= —0.1,
v =0.25.
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Figure 46: Normalized force for a homogeneous half-plane containing an edge crack and
indented by a circular stamp as shown in Figure 8. b/R = —0.05, a/R= 0.1,
v =0.25.
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Figure 47: Mode I stress intensity factors for an edge crack in a homogeneous half-plane
indented by a circular stamp as shown in Figure 8. b/R= —0.1, a/R= —0.15,
v =10.25.
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Figure 48: Mode II stress intensity factors for an edge crack in a homogeneous half-plane
indented by a circular stamp as shown in Figure 8. /R = — 0.1, a/R = — 0.15,
v =0.25.
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Figure 49: Normalized force for a homogeneous half-plane containing an edge crack and
indented by a circular stamp as shown in Figure 8. /R = —0.1, a/R= —0.15,
v = 0.25.
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APPENDIX A

Coefficients for the eigenvalue problem

Following are the coefficients for the eigenvalue problem to determine the strength of

singularity o (see equation (55)).

() = anf0) = — (1m) (cos(ma) — (207 + 4o +1) ), (Ala)
ms(0) = — (1m) (ncos(ma/2)(2 + @) + sin(ra)(1 +a) ), (Alb)
as0) = — (1m) (nsin(mar/2)(1 + @) ~ acos(ra/2)), (Alc)
az (@) = QSm(Z‘;/(i)S o) (Ald)
as(0) = 2°°S(:§1/(fr)é)2 +a) (Ale)
az3(@) = cot(na) — :; in. (A1f)
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APPENDIX B

Mellin transform method for the derivation of the characteristic equation

The characteristic equation given by (58) can also be obtained by considering a 90-

degree elastic wedge as shown in Figure 50 and using Mellin transformation.

K

Figure 50: 90-degree elastic wedge

The boundary conditions of the problem are given by,

o9(r,0) — noge(r,0) =0, 0<r<oc, (Bla)
o

Eug(r, 0) = f(r), 0<r< oo, (B1b)
oeg(r,m/2) =0, 0<r< oo, (Blc)
or(r,m/2) =0, 0<r<oo. (B1d)

In polar coordinates, following definition of the stresses in terms of a stress function

identically satisfies the equilibrium equations,

19x(r,6) , 16%(r,0)

OTT(T) 0) = r ar 7"2 802 ? (Bza)
8%x(r, 6
oas(r,6) = —’(,;(T’;l, (B2b)
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o /10x(r,0
org(r,0) = — é_r(;_xé_e_l)_

Thus, the compatibility condition becomes,

Vv2Vv2x(r,8) =0,
where,

0 18 18

2 — — om— —— ——
V= or? +7‘37‘ r2 992"

(B2¢)

(B3)

(B4)

It is also known that (see for example Hein and Erdogan [7]), displacements can be

expressed in terms of this biharmonic stress function x and another harmonic function ¢

in the following form,

ox(r,0 + 1\ 9¢(r,0
= -0 (£21), 0800

10x(r,0 k+1\ ,06(r,0
sty = - 1D (2100800

x(r, 8) and ¢(r, §) are related by

2 (,560)y

2 —
v X(Tv 0) - 37’ 89

and ¢(r, 8) is a harmonic function

V2¢(r,0) = 0.

Mellin transform of a function f(r) and its inverse are defined as

1 c+ico_

?@=A?mwwn i) =2 [ Fpyrrap.

- 2m c—100
Mellin transform of the derivative can be expressed as follows:

Cdf(r) potgn . _ 2L(p+n)
/0 g dr=(-1) TG f(p),
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(BSb)

(B6)

(B7)

(B?)

(B9)



provided that

dm—l

p+m—1
r drm—1

f(r)=0, (B10)

as,r —Oandr - oo form=12,3,...,n.

Taking the Mellin transform of equations (B3), (B6) and (B7), following equations are

obtained,

d45(8, d23(8, .

“‘%‘) + (p2+(p+2)2)“%p—) 4 (p+2)%R(8,p) = 0, (B11a)
dza(‘g:p) 27

gz TP ¢(8,p) =0, (B11b)
d - _ 1 2 d22(07 p)

g?0pt+2) =~ (p X(0,p) + — 10 ) (Bllc)

Solving equations (B11a) and (B11b) and using (B11c) displacements and stresses can be

expressed in the following form,

W2<8ur + ,Bug) _

or T or
1 c+i00 ‘ . o
— o= (p+1)(Ape™ + B(p+ 1) + xBe ) rvap,
c—100
(B122)
'r2( o) =
o7 \Tr0 T 1060) =
c+100 ' ' o
57; (p + 1) (x"‘lpe"?‘9 + B(p -+ 1)GZ(P+2)6 _ Be_z(p+2)9)r_pdp’
c—100
(B12b)

In equations (B12), A and B are complex constants and B is the complex conjugate of B.

Using equations (B12) and boundary conditions (B1) following expressions are obtained
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c+i00 2
090 20° + 4o+ 1 — cos(ma) 1
t)dt— B
/ £(2) tzm » e —da (B132)
1 o
il 2) =
s o™
c+ico :
neos(ma)(a + 2) + sin(na/2)(a + 1) r©
/ 7@ 2m » ) —pdo,  (BI3b)
where,

D(a) = n(4a® + 10a + 5 + (k — 1)cos(ma) + £(2a + 3)) + (5 + 1)sin(ma).  (B14)

Note that D(a) is same as the characteristic equation (58). If one performs the inversions
in (B13) by using the theory of residues, then negative roots of D(c) give stresses that are
singular as 7 approaches zero. Thus, D(a) =0 is the characteristic equation of the

problem.
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APPENDIX C

Kernels of the integral equations

The integral equations for are given by and the kernels are given by (22) and (23)
respectively. In this section we will give the transformed form of the kemels and other

terms for the three cases considered.

Flat stamp, b = 0

The transformed form of the kernels used in equations (63a,c) are given by,

Gui(rys1) = — %gKn(g—'r g, g«ﬁ + g), (Cla)
Gis(rysy) = — %g‘K13<%T + g—, ;lsl + g), (Clb)
Gao(r,s9) = — %ngg (gr—i— g—, 552 + g), (Clc)
Caalrys0) = — 2Kon(2r+ 2,502+ 5), (19
Gar(rys3) = — ;“lrngl (gr + g, 333 + g-) (Cle)
Gao(r, s3) = — %gKgg(gr + g, 5‘2533 + 5'25) (C1f)

The terms used in equations (68) are in the following form

1

hl]n(sl) = / G]l(T', S]_)(]. — 7")-—1/2(]. -+ r)aP,E_l/z’a)('r')dr, (C2a)
-1
1

Risn(s1) = / 1G13(T, s)(1 = )P (14 7r)*PLA(r)dr, (C2b)
1

hoon(s2) = / Gan(r, 52)(1 = )72 (1 + r)* P20 (r)drr, (C2c)
-1
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1
h23n(82) = / G23(7‘, 82)(1 - T‘)ﬂ(l + T‘)aPTEﬁ’a)(T)dT,
-1

1
h3in(s3) = / Ga(r, s3)(1 - 7”)_1/2(1 + ) P29 (r)dr,
-1

1
hson(s3) = / Gsa(r,s3)(1 — r)'l/Q(l + r)aP,E‘l/2’“)(r)dr.
-1

Flat stamp, b < 0

The transformed form of the kernels used in equations (79a,c) are given by,

1d d d d d
Ma(ro) = = 25K (5r+ 5597 3)

la—-25 a—>b a+b d d
Mis(rys1) = — = 5 K13< 5 T+ 5 551 5),

la-—15 a—>b a+b d d
Mzs(T,Sz)——; 5 Kza( 5" 51552 5),

1d d d a—b» a+b
Ma(rose) = = 25K (545 50+ ),

1d d d a—b a+b
Ma(rs)) = — 25Kn(5r+ 5 s+ )

The terms used in equations (84) are in the following form

1

Pun(sr) = / Mis(r, s1)(1 = r)"V2PB(120) (r)dr,
-1
1

pran(51) = / Mis(r, 51)(1 — )P (1 +7)* P89 (r)dr,
-1

1
pn(sn) = [ Maa(rsa)(1 = r) 2Py
-1
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(C2e)

(C26)

(C3a)

(C3b)

(C3c¢)

(C3d)

(C3e)

(C39)

(C4a)

(C4b)

(C4c)



1
Pasn(s2) = /_IM%(T’ 52)(1 = 7)°(1+7)* PP (r)dr,

1
Potn(s5) = / May(r, 53)(1 — r) "2 P20 (1),
-1

1
Pa2n(83) = / Mso(r, s3)(1 — T)—1/2P£-1/2,0)(T)dr_
-1

C.3 Circular stamp

The transformed form of the kernels used in equations (90a,c) are given by,

1d d d d d
Wa(ra) = = 25En(5r+ 5,39 +3)

la—5% a—2>b a-b d d
Wis(r,s1) = — = 5 Kw( 5" 51551 §>>

la—b5 a—2>b a—b d d
Was(r,s2) = — = 5 K23( 5" 5 ,532*‘5),

1d d d a—b a—2b
W31(T’53)__%§K31<2T+5’ g 37T T )

1d d d a—-b a—>b
Walr ) = = 25 Kn(5r+ 5. 7570+ =)

The terms used in equations (99) are in the following form

1
Q11n(51) = / Wu(?”, 51)(1 - T)_I/QPTE‘I/?’O)(T')dﬁ
-1
1
G13n(81) = / Wis(r, s1)(1 — r)ﬂ(l + r)wP,Eﬂ"")(r)dr,
-1

1
g22n(52) = / Wag(r, 82)(1 — 7)™ Y2 P20 (1) dr,
-1
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(Cde)

(C4f)

(C5a)

(C5b)

(Cs¢)

(C5d)

(Cse)

(C5D)

(Cé6a)

(C6b)

(C6c)



1

gon (53) = / Was(r, 85)(1 — 1P (1 + r)° P8 (r)dr, (C6d)
-1 -
1

g31n(83) = / Wai(r, s3)(1 = r) "2 PIV20) () dr, (C6e)
-1

1
q3on(83) = / Waa(r, 83)(1 — r)_l/zP,S_l/Q’O)(r)dr. (C6f)
-1
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APPENDIX D

Closed form expressions for Cauchy principal value integrals

Following result which is given by Tricomi [8], is the basic expression that is used to

evaluate the Cauchy principal value integrals involving Jacobi Polynomials,

L[ 1 pea 4P ped ) &
- [ a-orasrenn S,

cot(ma)(1 — z)*(1 + 2)P PP (z) -

(a+03) -
2 F(&)F(n+6+1)F(n+1:_n_a—ﬁ;]_——o(;12x>, (Dl)

~ al(n+a+B+1)

where a> —1,> —1,00#0,1,2,...., " is the gamma function and F() is
hypergeometric function. If (a+ ) is equal to — 1,0 or 1, (D1) can be further

simplified as follows,

1/t o 5 plas) 4y 9t
— — a, t =
e T

22 (D2)

— cot(na)(1 — 2)%(1 + z)° P (z) — e Al

—B) (),

where, x = — (a + f).
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APPENDIX E

Indentation of a homogeneous half-plane by a circular stamp

The expressions for the contact stress oyy(z,0), in-plane stress o.4(z,0) and

nonnalized force P /R can be obtained in closed form for the problem shown in Figure

51. The governing equations can be written as,

Figure 51: Homogeneous half-plane indented by a circular stamp

1 [Poy,(t,0) k—1 dup z—c
1 [Pow0) ., - T_¢ E
7r/a t—z d nfs—l—layy(x) k+1 R’ a<e<b, (Ela)

b
/ Oy(z,0)dr = — P. (Elb)

(Ela) and (E1b) can be solved in closed form and following results can be obtained

* =2z/(a—b) — (a+b)/(a—1b), (E22)
oyy(a*,0) = u2sfini”1ﬁ) (a; b) (1 - x*)ﬁ(l + x*)w, —1<at <1, (E2b)
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where,

cot(mf) = — 77_(:___;;1_1_)’ (E3a)
cot(mw) = E(I—ST_;—), (E3b)

and, 8> 0, w > 0, B+ w = 1. It can be seen that if @ and b are known, normalized force
can be obtained using (E2b) and position of the centerline of the stamp can be obtained
from (E2c). The in-plane stress 0,.(z, 0) can also be determined in closed form (for the
details of the derivation of o,.(z,0), see Guler [9]). For —oo <z* < —1, we can

write,
sz($*90) = _Cl(—x*+1)ﬂ(—x*_l)w’x*_*'ﬁ_wa (Eda)
for —1<z* <1,

02a(z*,0) = C1(1 — )P (1 + 2%) cos(nB) — 2* + f — w+ Co(1 — z°)° (1 + 27",

(E4b)
and for 1 < ¥ < o0,
0oa(a*,0) = Ci(@* ~ 1) (@* + 1) 2"+ -, (E4c)
where
Cy = u(a —b) 2sin(7rﬂ), C = - 2Cy (E5ab)

R k+1 sin(73) 0
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